• Journals Master List
  • DOAJ
  • 数据库logo
  • EuroPub
Huang Jin-zhu, Zhang Yan-zi, Yang Cui-yu, Zhang Ai-sha, Sui Xiao-lu, Xu Yun-peng, Xie Ting-fei, Chen Ji-hong. Role of tubular cell-derived exosomes in renal ischemia reperfusion injury[J]. Journal of Clinical Nephrology, 2024, 24(11): 946-950. DOI: 10.3969/j.issn.1671-2390.2024.11.009
Citation: Huang Jin-zhu, Zhang Yan-zi, Yang Cui-yu, Zhang Ai-sha, Sui Xiao-lu, Xu Yun-peng, Xie Ting-fei, Chen Ji-hong. Role of tubular cell-derived exosomes in renal ischemia reperfusion injury[J]. Journal of Clinical Nephrology, 2024, 24(11): 946-950. DOI: 10.3969/j.issn.1671-2390.2024.11.009

Role of tubular cell-derived exosomes in renal ischemia reperfusion injury

Funds: Shenzhen Baoan District Science and Technology Plan Basic Research Project(2021JD288);Shenzhen Baoan District High-level Talent Innovation Project
More Information
  • Renal ischemia reperfusion injury refers to a pathophysiological phenomenon that aggravates the degree of renal injury due to the restoration of blood supply after transient ischemia of renal tissue. It has been found that renal tubular cell-derived exosomes alleviate renal ischemia reperfusion injury through anti-inflammatory, antioxidant, inhibition of apoptosis, promotion of tissue regeneration and activation of autophagy . This review will discuss the protective effect of tubular cell-derived exosomes on renal ischemia reperfusion injury, in order to provide a theoretical basis for the clinical diagnosis, treatment and early prevention of renal ischemia reperfusion injury.

  • [1]
    徐耀禄, 刘玉梅, 张自强, 等. 干细胞源外泌体对组织缺血再灌注损伤治疗的研究进展[J]. 中国临床药理学杂志,2019,35(18):2171-2174,2183.DOI: 10.13699/j.cnki.1001-6821.2019.18.058.

    Xu YL, Liu YM, Zhang ZQ, et al. Research progress of stem cell-derived exosomes in tissue ischemia reperfusion injury[J]. Chin J Clin Pharmacol,2019,35(18):2171-2174,2183. DOI: 10.13699/j.cnki.1001-6821.2019.18.058.
    [2]
    Lin M, Li L, Li LP, et al. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis[J]. BMC Complement Altern Med,2014,14:19. DOI: 10.1186/1472-6882-14-19.
    [3]
    DeWolf SE, Kasimsetty SG, Hawkes AA, et al. DAMPs released from injured renal tubular epithelial cells activate innate immune signals in healthy renal tubular epithelial cells[J]. Transplantation,2022,106(8):1589-1599. DOI: 10.1097/TP.0000000000004038.
    [4]
    Tammaro A, Kers J, Scantlebery AML, et al. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration[J]. Front Immunol,2020,11:1346. DOI: 10.3389/fimmu.2020.01346.
    [5]
    Jang HR, Rabb H. Immune cells in experimental acute kidney injury[J]. Nat Rev Nephrol,2015,11(2):88-101. DOI: 10.1038/nrneph.2014.180.
    [6]
    Alzahrani FA. Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats[J]. Am J Transl Res,2019,11(5):2887-2907.
    [7]
    Hou J, Tolbert E, Birkenbach M, et al. Treprostinil alleviates hepatic mitochondrial injury during rat renal ischemia-reperfusion injury[J]. Biomedecine Pharmacother,2021,143:112172. DOI: 10.1016/j.biopha.2021.112172.
    [8]
    李佳蔚, 戎瑞明. 补体在肾移植缺血再灌注损伤中的作用与机制[J]. 中华移植杂志(电子版),2016,10(4):190-192.DOI: 10.3877/cma.j.issn.1674-3903.2016.04.010.

    Li JW, Rong RM. Role and mechanism of complement in kidney transplantation ischemia-reperfusion injury[J]. Chin J Transplant Electron Ed,2016,10(4):190-192. DOI: 10.3877/cma.j.issn.1674-3903.2016.04.010.
    [9]
    Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept[J]. Redox Biol,2015,6:524-551. DOI: 10.1016/j.redox.2015.08.020.
    [10]
    Daenen K, Andries A, Mekahli D, et al. Oxidative stress in chronic kidney disease[J]. Pediatr Nephrol,2019,34(6):975-991. DOI: 10.1007/s00467-018-4005-4.
    [11]
    柯心雨, 杨定平. 线粒体SIRT3在肾缺血再灌注损伤中作用的研究进展[J]. 临床肾脏病杂志,2021,21(5):421-426.DOI: 10.3969/j.issn.1671-2390.y20-143.

    Ke XY, Yang DP. Research advances on role of mitochondrial SIRT3 during renal ischemia-reperfusion injury[J]. J Clin Nephrol,2021,21(5):421-426. DOI: 10.3969/j.issn.1671-2390.y20-143.
    [12]
    Li ZH, Ludwig N, Thomas K, et al. The pathogenesis of ischemia-reperfusion induced acute kidney injury depends on renal neutrophil recruitment whereas sepsis-induced AKI does not[J]. Front Immunol,2022,13:843782. DOI: 10.3389/fimmu.2022.843782.
    [13]
    Zhao HH, Han QX, Ding XN, et al. Critical hubs of renal ischemia-reperfusion injury: endoplasmic reticulum-mitochondria tethering complexes[J]. Chin Med J,2020,133(21):2599-2609. DOI: 10.1097/CM9.0000000000001091.
    [14]
    Liu H, Wang L, Weng XD, et al. Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress[J]. Redox Biol,2019,24:101195. DOI: 10.1016/j.redox.2019.101195.
    [15]
    Wei XL, Deng WM, Dong ZW, et al. Identification of subtypes and a delayed graft function predictive signature based on ferroptosis in renal ischemia-reperfusion injury[J]. Front Cell Dev Biol,2022,10:800650. DOI: 10.3389/fcell.2022.800650.
    [16]
    Pefanis A, Ierino FL, Murphy JM, et al. Regulated necrosis in kidney ischemia-reperfusion injury[J]. Kidney Int,2019,96(2):291-301. DOI: 10.1016/j.kint.2019.02.009.
    [17]
    Huang JN, Cao H, Cui BB, et al. Mesenchymal stem cells-derived exosomes ameliorate ischemia/reperfusion induced acute kidney injury in a porcine model[J]. Front Cell Dev Biol,2022,10:899869. DOI: 10.3389/fcell.2022.899869.
    [18]
    Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy[J]. Nat Rev Mol Cell Biol,2014,15(1):49-63. DOI: 10.1038/nrm3722.
    [19]
    黄世雪, 杨定平. 肾缺血-再灌注损伤的致病机制及治疗方法的研究进展[J]. 临床肾脏病杂志,2019,19(7):529-533.DOI: 10.3969/j.issn.1671-2390.2019.07.013.

    Huang SX, Yang DP. Research advances in pathogenic mechanism and treatments of renal ischemia-reperfusion injury[J]. J Clin Nephrol,2019,19(7):529-533. DOI: 10.3969/j.issn.1671-2390.2019.07.013.
    [20]
    Hou J, Rao MY, Zheng WL, et al. Advances on cell autophagy and its potential regulatory factors in renal ischemia-reperfusion injury[J]. DNA Cell Biol,2019,38(9):895-904. DOI: 10.1089/dna.2019.4767.
    [21]
    Park JH, Ko J, Park YS, et al. Clearance of damaged mitochondria through PINK1 stabilization by JNK and ERK MAPK signaling in chlorpyrifos-treated neuroblastoma cells[J]. Mol Neurobiol,2017,54(3):1844-1857. DOI: 10.1007/s12035-016-9753-1.
    [22]
    Zhang YX, Nguyen DT, Olzomer EM, et al. Rescue of Pink1 deficiency by stress-dependent activation of autophagy[J]. Cell Chem Biol, 2017, 24(4): 471-480. e4. DOI: 10.1016/j.chembiol.2017.03.005.
    [23]
    Zhang Y, Bi JY, Huang JY, et al. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications[J]. Int J Nanomedicine,2020,15:6917-6934. DOI: 10.2147/IJN.S264498.
    [24]
    Yang DB, Zhang WH, Zhang HY, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics[J]. Theranostics,2020,10(8):3684-3707. DOI: 10.7150/thno.41580.
    [25]
    曾可君, 杨煜辉, 胡喆. 外泌体在重要脏器缺血再灌注损伤中的治疗作用研究进展[J]. 中国医药导报,2022,19(25):33-37.DOI: 10.20047/j.issn1673-7210.2022.25.07.

    Zeng KJ, Yang YH, Hu Z. Research progress on the therapeutical effect of exosomes in ischemia reperfusion injury in important organs[J]. China Med Her,2022,19(25):33-37. DOI: 10.20047/j.issn1673-7210.2022.25.07.
    [26]
    刘艺, 张鹏, 孙世仁, 等. 间充质干细胞来源的外泌体在缺血再灌注肾损伤中的作用和机制研究进展[J]. 华西医学,2022,37(7):1081-1087.DOI: 10.7507/1002-0179.202205144.

    Liu Y, Zhang P, Sun SR, et al. Role and mechanism of mesenchymal stem cell-derived exosomes on renal ischemiareperfusion injury[J]. West China Med J,2022,37(7):1081-1087. DOI: 10.7507/1002-0179.202205144.
    [27]
    Araujo-Abad S, Saceda M, de Juan Romero C. Biomedical application of small extracellular vesicles in cancer treatment[J]. Adv Drug Deliv Rev,2022,182:114117. DOI: 10.1016/j.addr.2022.114117.
    [28]
    陈佳, 何娅妮. 肾小管细胞衰老在急性肾损伤中的研究进展[J]. 华西医学,2022,37(7):1076-1080.DOI: 10.7507/1002-0179.202206040.

    Chen J, He YN. Research progress on renal tubular cell senescence in acute kidney injury[J]. West China Med J,2022,37(7):1076-1080. DOI: 10.7507/1002-0179.202206040.
    [29]
    晏子友, 万鸣宏, 杨林, 等. 缺氧环境下肾小管上皮细胞外泌体中自噬相关microRNA表达量的研究[J]. 安徽医科大学学报,2020,55(1):56-59.DOI: 10.19405/j.cnki.issn1000-1492.2020.01.012.

    Yan ZY, Wan MH, Yang L, et al. Expression of autophagy related microRNA in human renal tubular epithelial exudate under hypoxia[J]. Acta Univ Med Anhui,2020,55(1):56-59. DOI: 10.19405/j.cnki.issn1000-1492.2020.01.012.
    [30]
    Dominguez JM 2nd, Dominguez JH, Xie DH, et al. Human extracellular microvesicles from renal tubules reverse kidney ischemia-reperfusion injury in rats[J/OL]. PLoS One,2018,13(8):e0202550. DOI: 10.1371/journal.pone.0202550.
    [31]
    Viñas JL, Spence M, Gutsol A, et al. Receptor-ligand interaction mediates targeting of endothelial colony forming cell-derived exosomes to the kidney after ischemic injury[J]. Sci Rep,2018,8(1):16320. DOI: 10.1038/s41598-018-34557-7.
    [32]
    Du J, Sun Q, Wang ZH, et al. Tubular epithelial cells derived-exosomes containing CD26 protects mice against renal ischemia/reperfusion injury by maintaining proliferation and dissipating inflammation[J]. Biochem Biophys Res Commun,2021,553:134-140. DOI: 10.1016/j.bbrc.2021.03.057.
    [33]
    Dominguez JH, Liu YL, Gao HY, et al. Renal tubular cell-derived extracellular vesicles accelerate the recovery of established renal ischemia reperfusion injury[J]. J Am Soc Nephrol,2017,28(12):3533-3544. DOI: 10.1681/ASN.2016121278.
    [34]
    Chen HH, Lai PF, Lan YF, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion[J]. J Cell Physiol,2014,229(9):1202-1211. DOI: 10.1002/jcp.24554.
    [35]
    Li XR, Liao J, Su XJ, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1[J]. Theranostics,2020,10(21):9561-9578. DOI: 10.7150/thno.42153.
    [36]
    张炯, 王佳, 陈丽朱, 等. 蛇床子素对大鼠肾脏缺血-再灌注损伤的保护作用[J]. 临床肾脏病杂志,2017,17(11):687-691.DOI: 10.19405/j.cnki.issn1000-1492.2018.11.016.

    Zhang J, Wang J, Chen LZ, et al. Protective effects of Osthole on renal ischemia reperfusion injury[J]. J Clin Nephrol,2017,17(11):687-691. DOI: 10.19405/j.cnki.issn1000-1492.2018.11.016.
    [37]
    Dominguez JH, Xie DH, Kelly KJ. Renal, but not platelet or skin, extracellular vesicles decrease oxidative stress, enhance nascent peptide synthesis, and protect from ischemic renal injury[J]. Am J Physiol Renal Physiol,2023,325(2):F164-f176. DOI: 10.1152/ajprenal.00321.2022.
    [38]
    Thongboonkerd V. Roles for exosome in various kidney diseases and disorders[J]. Front Pharmacol,2019,10:1655. DOI: 10.3389/fphar.2019.01655.
    [39]
    Cao JY, Wang B, Tang TT, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics,2021,11(11):5248-5266. DOI: 10.7150/thno.54550.
    [40]
    Zhang W, Zhou XJ, Yao QS, et al. HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells[J]. Am J Physiol Renal Physiol,2017,313(4):F906-f913. DOI: 10.1152/ajprenal.00178.2017.
    [41]
    Ding ZY, Tang TT, Li ZL, et al. Therapeutic effect of extracellular vesicles derived from HIF prolyl hydroxylase domain enzyme inhibitor-treated cells on renal ischemia/reperfusion injury[J]. Kidney Dis,2022,8(3):206-216. DOI: 10.1159/000522584.
    [42]
    Feigerlová E, Battaglia-Hsu SF, Hauet T, et al. Extracellular vesicles as immune mediators in response to kidney injury[J]. Am J Physiol Renal Physiol,2018,314(1):F9-f21. DOI: 10.1152/ajprenal.00336.2017.
    [43]
    Aghajani Nargesi A, Lerman LO, Eirin A. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges[J]. Stem Cell Res Ther,2017,8(1):273. DOI: 10.1186/s13287-017-0727-7.
    [44]
    Zhu FM, Chong Lee Shin OLS, Pei GC, et al. Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition through tubular epithelial cell dependent Sox9 activation[J]. Oncotarget,2017,8(41):70707-70726. DOI: 10.18632/oncotarget.19979.
    [45]
    Prunotto M, Farina A, Lane L, et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine[J]. J Proteomics,2013,82:193-229. DOI: 10.1016/j.jprot.2013.01.012.
    [46]
    Chen YM, Zhang CY, Du YJ, et al. Exosomal transfer of microRNA-590-3p between renal tubular epithelial cells after renal ischemia-reperfusion injury regulates autophagy by targeting TRAF6[J]. Chin Med J,2022,135(20):2467-2477. DOI: 10.1097/CM9.0000000000002377.
    [47]
    Baisantry A, Bhayana S, Rong S, et al. Autophagy induces prosenescent changes in proximal tubular S3 segments[J]. J Am Soc Nephrol,2016,27(6):1609-1616. DOI: 10.1681/ASN.2014111059.
  • Related Articles

    [1]Chen Hui-deng, Yang Cheng. Role of miRNAs in exosomes in the pathogenesis of renal fibrosis[J]. Journal of Clinical Nephrology, 2024, 24(12): 1034-1039. DOI: 10.3969/j.issn.1671-2390.2024.12.009
    [2]Yan Pu, Zhang Ning, Li Tong-xia, Liu Shi-wei. Correlation between markers of renal tubular injury and proteinuria in patients with diabetic kidney disease[J]. Journal of Clinical Nephrology, 2024, 24(4): 297-302. DOI: 10.3969/j.issn.1671-2390.2024.04.006
    [3]Wang Chuan-ling, Zhang Shi-qiu, Cao Yan-wei, Li Ji, Zhu Yong-jun. Roles of renal tubular epithelial cell injury related cytokines in chronic kidney disease[J]. Journal of Clinical Nephrology, 2024, 24(3): 238-243. DOI: 10.3969/j.issn.1671-2390.2024.03.009
    [4]Shao Xiao-lin, Luo Yu-qing, Ma Dong-hong, Deng Xi-wen, Guo Ming-hao. Associations between renal tubular lesions and clinical parameters as well as prognosis in diabetic kidney disease[J]. Journal of Clinical Nephrology, 2022, 22(11): 903-910. DOI: 10.3969/j.issn.1671-2390.2022.11.004
    [5]Xiao Zhen-meng, Li Zhi-lian, Dong Wei, Zhang Meng-xi, Chen Yuan-han, Li Rui-zhao, Liang Xin-ling. Changes of PGC-1α/TFAM signaling pathway and mitochondrial dysfunction of renal tubular epithelial cells during sepsis-associated acute kidney injury[J]. Journal of Clinical Nephrology, 2021, 21(6): 498-506. DOI: 10.3969/j.issn.1671-2390.m20-258
    [6]LIU Hui, SUN Yi, YAO Ying. Study on the significance and influencing factors of detection of renal tubular injury markers in high-risk patients with chronic renal disease[J]. Journal of Clinical Nephrology, 2019, 19(9): 672-676. DOI: 10.3969/j.issn.1671-2390.2019.09.007
    [7]ZHANG Jiong, WANG Jia, WANG Fang, LI Gui-sen. Protective effect of erythropoietin preconditioning on kidney ischemia-reperfusion injury[J]. Journal of Clinical Nephrology, 2017, 17(9): 564-568. DOI: 10.3969/j.issn.1671-2390.2017.09.012
    [8]DU Yi, QIAN Bai-yin, LI Su-xia, LI Mi. The influence of trimetazidine hydrochloride on acute ischemia-reperfusion injury of endothelial cells and oxidative stress response of rat kidney[J]. Journal of Clinical Nephrology, 2017, 17(5): 299-302. DOI: 10.3969/j.issn.1671-2390.2017.05.009
    [9]ZUO Song, ZHANG Jiong. Protective effect of EGCG on renal ischemia-reperfusion injury[J]. Journal of Clinical Nephrology, 2017, 17(4): 240-244. DOI: 10.3969/j.issn.1671-2390.2017.04.010
    [10]HUANG Ke-jing, HUANG Ting, HU Wen-bing, XIANG Li-na. Protective effect of autologous adipose-derived mesenchymal stem cells on renal ischemia reperfusion injury[J]. Journal of Clinical Nephrology, 2017, 17(2): 115-119. DOI: 10.3969/j.issn.1671-2390.2017.02.010
  • Cited by

    Periodical cited type(1)

    1. 张阳,何繁漪,孙孔春,杨瑞,余学志,张玲,陈瑞祥,沈报春. 铁死亡在急性肾损伤中的分子机制及治疗靶点研究进展. 器官移植. 2025(02): 315-321 .

    Other cited types(0)

Catalog

    Article views (48) PDF downloads (14) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return