• Journals Master List
  • DOAJ
  • 数据库logo
  • EuroPub
Liu Qiu-ju, Cao Jing-yuan, Lu Guo-yuan. Establishing and validating a risk prediction model for acute kidney injury in patients with acute heart failure[J]. Journal of Clinical Nephrology, 2021, 21(6): 485-492. DOI: 10.3969/j.issn.1671-2390.m20-224
Citation: Liu Qiu-ju, Cao Jing-yuan, Lu Guo-yuan. Establishing and validating a risk prediction model for acute kidney injury in patients with acute heart failure[J]. Journal of Clinical Nephrology, 2021, 21(6): 485-492. DOI: 10.3969/j.issn.1671-2390.m20-224

Establishing and validating a risk prediction model for acute kidney injury in patients with acute heart failure

More Information
  • Received Date: October 14, 2020
  • Available Online: May 11, 2023
  • Published Date: June 27, 2021
  • Objective To explore the risk factors of acute kidney injury(AKI)in patients with acute heart failure(AHF)and establish a risk prediction model of facilitating an early identification of high risks for lowering the incidence of AKI.Methods From January 2016 to December 2017,a total of 386 AHF in patients at First Affiliated Hospital of Soochow University were selected as the study subjects.They were randomized into two groups of model(n=257)and verification(n=129).The risk factors of AKI were examined in AHF patients according to β scores of various factors.Through a risk prediction model,the area under curve(AUC)of receiver operating characteristic(ROC)and Hosmer-Lemeshow goodness-of-fit test were employed for evaluating resolutions and calibrations.Results The incidence of AKI was 38.9% in AHF patients.Logistic regression analysis revealed that estimated glomerular filtration rate(eGFR)<60 ml·min-1·(1.73 m2)-1 age ≥72 years,diastolic blood pressure(DBP)≤78 mmHg,fasting plasma glucose(FPG)≥6.0 mmol/L and uric acid(UA)≥430 μmol/L were independent risk factors for AKI in AHF patients.The above risk factors were β-scored on the basis of risk prediction model.The AUC of model and verification groups were 0.773 and 0.758 respectively,and the Hosmer-Lemeshow goodness-of-fit test P values were 0.806 and 0.785 respectively,indicating that the model had decent resolution and calibration.Conclusion The above risk prediction model based upon eGFR,age,DBP,FPG and UA has decent resolution and calibration.It should be further popularized in clinical practices.
  • [1]
    Ponikowski P,Voors AA,Anker SD,et al.2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J].Eur Heart J,2016,37(27):2129-2200.DOI: 10.1093/eurheartj/ehw128.
    [2]
    Ronco C,Di Lullo L.Cardiorenal syndrome in western countries:epidemiology,diagnosis and management approaches[J].Kidney Dis(Basel),2017,2(4):151-163.DOI: 10.1159/000448749.
    [3]
    Rastogi A,Fonarow GC.The cardiorenal connection in heart failure[J].Curr Cardiol Rep,2008,10(3):190-197.DOI: 10.1007/s11886-008-0033-1.
    [4]
    Vandenberghe W,Gevaert S,Kellum JA,et al.Acute kidney injury in cardiorenal syndrome type 1 patients:a systematic review and meta-analysis[J].Cardiorenal Med,2016,6(2):116-128.DOI: 10.1159/000442300.
    [5]
    Akhter MW,Aronson D,Bitar F,et al.Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure[J].Am J Cardiol,2004,94(7):957-960.DOI: 10.1016/j.amjcard.2004.06.041.
    [6]
    王银娜,越桐,程虹,等.急性心力衰竭患者发生1型心肾综合征的风险预警评分[J].临床心血管病杂志,2014,30(6):506-508.DOI: 10.13201/j.issn.1001-1439.2014.06.013.

    Wang YN,Yue T,Cheng H,et al.Prediction risk score for type 1 cardiorenal syndrome in patients with acute heart failure[J].J Clin Cardiol,2014,30(6):506-508.DOI: 10.13201/j.issn.1001-1439.2014.06.013.
    [7]
    Zhou LZ,Yang XB,Guan Y,et al.Development and validation of a risk score for prediction of acute kidney injury in patients with acute decompensated heart failure:a prospective cohort study in China[J].J Am Heart Assoc,2016,5(11):e004035.DOI: 10.1161/JAHA.116.004035.
    [8]
    Fan ZY,Li Y,Ji HH,et al.Nomogram model to predict cardiorenal syndrome type 1 in patients with acute heart failure[J].Kidney Blood Press Res,2018,43(6):1832-1841.DOI: 10.1159/000495815.
    [9]
    The ad-hoc working group of ERBP,Fliser D,Laville M,et al.A European Renal Best Practice(ERBP)position statement on the Kidney Disease Improving Global Outcomes(KDIGO)Clinical Practice Guidelines on Acute Kidney Injury:Part 1:definitions,conservative management and contrast-induced nephropathy[J].Nephrol Dial Transplant,2012,27(12):4263-4272.DOI: 10.1093/ndt/gfs375.
    [10]
    Fortescue EB,Kahn K,Bates DW.Development and validation of a clinicalprediction rule for major adverse outcomes in coronary bypass grafting[J].Am J Cardiol,2001,88(11):1251-1258.DOI: 10.1016/s0002-9149(01)02086-0.
    [11]
    Bock JS,Gottlieb SS.Cardiorenal syndrome new perspectives[J].Circulation,2010,121(23):2592-600.DOI: 10.1161/CIRCULATIONAHA.109.886473.
    [12]
    许书添,李世军.肾静脉高压与急性肾损伤[J].肾脏病与透析肾移植杂志,2015,24(6):557-561.

    Xu ST,Li SJ.Relationship between renal venous hypertension and acute kidney injury[J].Chin J Nephrol Dial Transplant,2015,24(6):557-561.
    [13]
    Virzì GM,Torregrossa R,Cruz DN,et al.Cardiorenal syndrome type 1 may be immunologically mediated:a pilot evaluation of monocyte apoptosis[J].Cardiorenal Med,2012,2(1):33-42.DOI: 10.1159/000335499.
    [14]
    Pastori S,Virzì GM,Brocca A,et al.Cardiorenal syndrome type 1:activation of dual apoptotic pathways[J].Cardiorenal Med,2015,5(4):306-315.DOI: 10.1159/000438831.
    [15]
    Virzì GM,Clementi A,de Cal M,et al.Oxidative stress:dual pathway induction in cardiorenal syndrome type 1 pathogenesis[J].Oxid Med Cell Longev,2015,2015:391790.DOI: 10.1155/2015/391790.
    [16]
    Chawla LS,Eggers PW,Star RA,et al.Acute kidney injury and chronic kidney disease as interconnected syndromes[J].N Engl J Med,2014,371(1):58-66.DOI: 10.1056/NEJMra1214243.
    [17]
    Khoundabi B,Kazemnejad A,Mansourian M,et al.Acute kidney injury risk factors for ICU patients following cardiac surgery:the application of joint modeling[J].Trauma Mon,2016,21(4):e23749.DOI: 10.5812/traumamon.23749.
    [18]
    Gerstein HC,Pogue J,Mann JF,et al.The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study:a prospective epidemiological analysis[J].Diabetologia,2005,48(9):1749-1755.DOI: 10.1007/s00125-005-1858-4.
    [19]
    Levitan EB,Song YQ,Ford ES,et al.Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies[J].Arch Intern Med,2004,164(19):2147-2155.DOI: 10.1001/archinte.164.19.2147.
    [20]
    Jankowska EA,Ponikowska B,Majda J,et al.Hyperuricaemia predicts poor outcome in patients with mild to moderate chronic heart failure[J].Int J Cardiol,2007,115(2):151-155.DOI: 10.1016/j.ijcard.2005.10.033.
    [21]
    Hu WX,He WN,Liu W,et al.Risk factors and prognosis of cardiorenal syndrome type 1 in elderly Chinese patients:a retrospective observational cohort study[J].Kidney Blood Press Res,2016,41(6):1037.DOI: 10.1159/000452596.
    [22]
    Do C.Intravenous contrast:friend or foe? A review on contrast-induced nephropathy[J].Adv Chronic Kidney Dis,2017,24(3):147-149.DOI: 10.1053/j.ackd.2017.03.003.
  • Related Articles

    [1]Zhou Jie, Xian Wei-ying, Li Ji-tian, Zeng Jin-cheng. Influencing factors of IgA nephropathy combined with hyperuricemia and a nomogram to predict the risk of hyperuricemia in IgA nephropathy patients[J]. Journal of Clinical Nephrology, 2025, 25(1): 35-42. DOI: 10.3969/j.issn.1671-2390.2025.01.006
    [2]Niu Dan, Zhang Yi, Dong Dao-ran. Risk factors of acute kidney injury in severe COVID-19 patients and their predictive values[J]. Journal of Clinical Nephrology, 2024, 24(9): 720-727. DOI: 10.3969/j.issn.1671-2390.2024.09.003
    [3]Chu Xue-qian, Zhou Wei, Huang Xuan, Pa Tiguli·Maimaiti, Li Su-hua. Influencing factors and prediction models for AKI in ascites patients with hepatitis B cirrhosis[J]. Journal of Clinical Nephrology, 2024, 24(8): 623-628. DOI: 10.3969/j.issn.1671-2390.2024.08.002
    [4]Xue Jing, Chen Da-wei, Wan Xin. Construction of a predictive model for acute kidney injury after acute ischemic stroke[J]. Journal of Clinical Nephrology, 2024, 24(6): 475-483. DOI: 10.3969/j.issn.1671-2390.2024.06.006
    [5]Shi Hong, Yu Hai-tao, Jin Ze-yue. Homogram prediction modeling of acute kidney injury after heart valve replacement[J]. Journal of Clinical Nephrology, 2024, 24(3): 177-184. DOI: 10.3969/j.issn.1671-2390.2024.03.001
    [6]Ren Yi, Guo Li-li, Li Rong-shan. Analysis of risk factors for mortality in patients with liver cirrhosis and nomograph prediction modeling[J]. Journal of Clinical Nephrology, 2023, 23(12): 1017-1022. DOI: 10.3969/j.issn.1671-2390.2023.12.007
    [7]Xu Dao-jun, Guan Chen, Li Chen-yu, Zhang Jia-qi, Xu Ling-yu, Xu Yan. Risk factors of acute kidney injury after gastrectomy and its predictive value[J]. Journal of Clinical Nephrology, 2023, 23(12): 971-979. DOI: 10.3969/j.issn.1671-2390.2023.12.001
    [8]Buheliqi· Maimaiti, Feng Qi, Liu Hong-yan, Xu Chao. Analysis of risk factors for chronic kidney disease complicated by renal failure and constructing a nomogram model[J]. Journal of Clinical Nephrology, 2023, 23(6): 467-473. DOI: 10.3969/j.issn.1671-2390.2023.06.005
    [9]Deng Xi-wen, Li Jin, Shao Xiao-lin, Ji Ming-yan, Ma Long-fei, Guo Ming-hao. Analysis of prognostic factors for patients with IgA nephropathy and establishment of a nomogram prediction model[J]. Journal of Clinical Nephrology, 2022, 22(10): 834-839. DOI: 10.3969/j.issn.1671-2390.2022.10.007
    [10]GAO Yu-mei, LIU Guo-ping, YU Lei, WANG Yan-fang, ZHANG Yan-fang. External validation and comparison of two risk scores for predicting post-contrast acute kidney injury in patients undergoing coronary intervention[J]. Journal of Clinical Nephrology, 2020, 20(6): 477-481. DOI: 10.3969/j.issn.1671-2390.2020.06.008

Catalog

    Article views (248) PDF downloads (248) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return