Citation: | TANG Yu-yan, HE Hai-dong, SUN Wei-qian, ZHANG Dong-liang, HU Ping, XU Xu-dong. The pathogenesis of CD4+ T lymphocytes in IgA nephropathy[J]. Journal of Clinical Nephrology, 2020, 20(2): 147-153. DOI: 10.3969/j.issn.1671-2390.2020.02.011 |
[1] |
Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy[J]. PediatrNephrol, 2018, 33(5):763-777. DOI: 10.1007/s00467-017-3699-z.
|
[2] |
Selvaskandan H, Cheung CK, Muto M, et al. New strategies and perspectives on managing IgA nephropathy[J]. Clin Exp Nephrol, 2019, 23(5):577-588. DOI: 10.1007/s10157-019-01700-1.
|
[3] |
Suzuki H,Yasutake J, Makita Y, et al. IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis[J]. Kidney Int, 2018, 93(3):700-705. DOI: 10.1016/j.kint.2017.10.019.
|
[4] |
Knoppova B, Reily C, Maillard N, et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy[J]. Front Immunol, 2016, 7:117. DOI: 10.3389/fimmu.2016.00117.
|
[5] |
Kiryluk K, Li YF, Moldoveanu Z, et al. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway[J]. PLoS Genet, 2017, 13(2):e1006609. DOI: 10.1371/journal.pgen.1006609.
|
[6] |
Chen XH, Tang YY, Zhang Y, et al.Tapasin modification on the intracellular epitope HBcAg18-27 enhances HBV-specific CTL immune response and inhibits hepatitis B virus replication in vivo[J]. Lab Invest, 2014, 94(5):478-490. DOI: 10.1038/labinvest.2014.6.
|
[7] |
Oestreich KJ, Weinmann AS. Transcriptional mechanisms that regulate T helper 1 cell differentiation[J]. CurrOpin Immunol, 2012, 24(2):191-195. DOI: 10.1016/j.coi.2011.12.004.
|
[8] |
Tang YY, Chen XH, Zhang Y, et al. Fusion protein oftapasin and hepatitis B core antigen 18-27 enhances T helper cell type 1/2 cytokine ratio and antiviral immunity by inhibiting suppressors of cytokine signaling family members 1/3 in hepatitis B virus transgenic mice[J]. Mol Med Rep, 2014, 9(4):1171-1178. DOI: 10.3892/mmr.2014.1947.
|
[9] |
Singer BD, King LS,D'Alessio FR. Regulatory T cells as immunotherapy[J]. Front Immunol, 2014, 5:46. DOI: 10.3389/fimmu.2014.00046.
|
[10] |
Harrington LE, Hatton RD,Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11):1123-1132. DOI: 10.1038/ni1254.
|
[11] |
Read KA, Powell MD,Oestreich KJ. T follicular helper cell programming by cytokine-mediated events[J]. Immunology, 2016, 149(3):253-261. DOI: 10.1111/imm.12648.
|
[12] |
Shea-Donohue T,Fasano A, Smith A, et al. Enteric pathogens and gut function:Role of cytokines and STATs[J]. Gut Microbes, 2010, 1(5):316-324. DOI: 10.4161/gmic.1.5.13329.
|
[13] |
Krebs CF, Steinmetz OM. CD4+ T cell fate in glomerulonephritis:a tale of Th1, Th17, and novel treg subtypes[J]. Mediators Inflamm, 2016, 2016:5393894. DOI: 10.1155/2016/5393894.
|
[14] |
Chien JW, Chen WL, Tsui YG, et al. Daily urinary interleukin-11 excretion correlated with proteinuria in IgA nephropathy and lupus nephritis[J]. Pediatr Nephrol, 2006, 21(4):490-496. DOI: 10.1007/s00467-006-0016-7.
|
[15] |
Tomino Y. IgA nephropathy:lessons from an animal model, the ddY mouse[J]. J Nephrol, 2008, 21(4):463-467.
|
[16] |
Tsuruga K, Oki E, Aizawa-Yashiro T, et al. Potential Th1/Th2 predominance in children with newly diagnosed IgA nephropathy[J]. Acta Paediatr, 2010, 99(10):1584-1586. DOI: 10.1111/j.1651-2227.2010.01881.x.
|
[17] |
Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease:an update[J]. Front Immunol, 2017, 8:405. DOI: 10.3389/fimmu.2017.00405.
|
[18] |
Xiao J, Wang MT,Xiong DW, et al. TGF-β1 mimics the effect of IL-4 on the glycosylation of IgA1 by downregulating core 1β1, 3-galactosyltransferase and Cosmc[J]. Mol Med Rep, 2017, 15(2):969-974. DOI: 10.3892/mmr.2016.6084.
|
[19] |
方心萦, 金善善, 王小琴. IgA肾病分子机制研究进展[J]. 临床肾脏病杂志, 2018, 18(12):784-787. DOI: 10.3969/j.issn.1671-2390.2018.12.014.
|
[20] |
Lin FJ, Jiang GR, Shan JP, et al. Imbalance of regulatory T cells to Th17 cells inIgA nephropathy[J]. Scand J Clin Lab Invest, 2012, 72(3):221-229. DOI: 10.3109/00365513.2011.652158.
|
[21] |
陈明喆, 李易, 何伟. 橙皮苷对IgA肾病大鼠肾脏组织中JAK/STAT信号通路相关蛋白STAT3和p-STAT3表达的影响[J]. 解放军医药杂志, 2017, 29(3):10-14.DOI: 10.3969/j.issn.2095-140X.2017.03.003.
|
1. |
邹皓珍,杨佳,席哲帆,纪瑞,董华. IgA肾病发病机制及治疗新进展. 中国医学创新. 2025(07): 169-174 .
![]() | |
2. |
江莉媛,李杨松,张瑾,罗婕,张桂荣,朱宝洁,龙飞,郭力. 基于水负荷动物模型及生物信息学虎杖利湿作用的初步研究. 中药与临床. 2024(03): 36-45 .
![]() | |
3. |
史彬,赵景新,晏铭洋,司远. IgA肾病患者血清Gd-IgA1与Th淋巴细胞亚群变化及临床病理特点的相关性分析. 中国中西医结合肾病杂志. 2024(09): 772-777+850 .
![]() | |
4. |
齐惠,刘月,岳冀,孟建中. CD4~+T细胞Th1/Th2及Th17/Treg平衡状态在IgA肾病间质纤维化中的意义. 肾脏病与透析肾移植杂志. 2024(05): 417-423 .
![]() | |
5. |
朱建萍,何玲慧,向勇. CC类趋化因子受体2、Th1/Th2细胞在IgA肾病大鼠肾间质纤维化中的表达及意义. 医学分子生物学杂志. 2024(05): 458-463 .
![]() | |
6. |
陈杉杉,彭胜男,洪婷. 大黄酸对免疫球蛋白A肾病的改善作用及机制研究. 中国药房. 2023(07): 819-824+848 .
![]() | |
7. |
郑雪,张守琳,王致磊,邹迪,王银萍. 相关信号通路在IgA肾病发病机制中的研究进展. 现代中西医结合杂志. 2022(04): 572-575 .
![]() | |
8. |
胡迎春,孔刚,吕学爱. 他克莫司联合缬沙坦治疗免疫球蛋白A肾病的效果分析. 大医生. 2022(22): 139-141 .
![]() | |
9. |
陈江秀,莫世松,韩珠. MiR-485-3p对IgA肾病的诊断价值及其与免疫学指标和T淋巴细胞亚群的相关性. 临床肾脏病杂志. 2022(11): 924-930 .
![]() | |
10. |
秦阳,丁樱,郭婷,贺卓卓. CD4+T淋巴细胞亚群在IgA肾病中的作用研究进展. 解放军医药杂志. 2022(10): 114-116 .
![]() | |
11. |
樊晓敏,米焱,王彩丽. NLRP3炎症小体通过T细胞亚群参与IgA肾病发病机制的研究进展. 上海医学. 2022(11): 805-808 .
![]() | |
12. |
李仪,叶伟标,冼丽英,戴绍文,莫玉前,刘国辉. 免疫球蛋白A肾病临床特征及外周血T细胞亚群、Th22变化研究. 临床军医杂志. 2021(02): 188-189 .
![]() |