基于超声和临床参数的列线图模型对IgA肾病牛津分型MEST-C总分分级的预测价值

    The predictive value of nomogram model based on ultrasound and clinical parameters for the MEST-C total score grading of IgA nephropathy Oxford classification

    • 摘要:
      目的  基于超声和临床参数构建列线图模型,探讨无创超声检查对IgA肾病(IgA nephropathy,IgAN)牛津分型MEST-C总分的独立预测价值,为临床治疗方案确立提供指导。
      方法  纳入2017年1月1日至2022年4月30日在川北医学院附属南充市中心医院肾内科经肾活检确诊的226例原发性IgAN患者,收集超声和临床参数,按MEST-C总分>2分和≤2分分成两组,以总分>2分为研究结局。通过单因素、多因素Logistic回归分析筛选独立预测因子并建立预测模型。
      结果  肾脏长度(OR=0.938,95%CI:0.896~0.982,P=0.006)、尿红细胞计数(OR=1.003,95%CI:1.001~1.005,P=0.010)、血肌酐(serum creatinine,Scr)(OR=1.020,95%CI:1.002~1.038,P=0.027)、24 h尿蛋白定量(OR=1.713,95%CI:1.265~2.319,P=0.001)为评估IgAN的MEST-C总分的独立预测因子。使用独立预测因子构建列线图模型,训练集和验证集受试者工作特征曲线下面积(area under curve,AUC)为0.821(95%CI:0.756~0.887),0.780(95%CI:0.656~0.904)。以MEST-C总分>2分为研究结局,利用多因素Logistic回归分析筛选出的临床指标(包括24 h尿蛋白定量、Scr、尿红细胞计数)建立临床预测模型并与本研究中纳入超声参数的列线图模型进行比较,结果显示,临床模型的训练集中受试者工作特征曲线AUC为0.819(95%CI:0.756~0.883),低于列线图模型的AUC(0.821,95%CI:0.756~0.887),临床结合超声参数的列线图模型预测MEST-C总分>2分的预测效能较单纯临床模型更佳。
      结论  本研究基于超声和临床参数构建的列线图模型具有良好的预测效能,能较准确地预测MEST-C总分,可用于临床无创评估肾脏病理严重程度,为IgAN患者的治疗提供指导。

       

      Abstract:
      Objective  Based on ultrasound and clinical parameters, a nomogram model was constructed to explore the independent predictive value of non-invasive ultrasound examination on the total MEST-C score of IgA Nephropathy(IgAN) Oxford classification, providing guidance for the establishment of clinical treatment plans.
      Methods 226 patients with primary IgAN who were diagnosed by renal biopsy at Nanchong Central Hospital Affiliated to North Sichuan Medical College from January 1, 2017 to April 30, 2022 were included. Ultrasound and clinical parameters were collected and patients were divided into two groups based on a MEST-C total score of >2 or ≤2, with a total score of >2 as the study outcome. Screen independent predictive factors and establish predictive models through single factor and multi factor logistic regression analysis.
      Result  Kidney length(OR=0.938, 95%CI: 0.896−0.982, P=0.006), urinary red blood cell count(OR=1.003, 95%CI:1.001−1.005, P=0.010), serum creatinine(Scr)(OR=1.020, 95%CI:1.002−1.038, P=0.027), and 24-hour urine protein quantification(OR=1.713, 95%CI:1.265-2.319, P=0.001) are independent predictors for evaluating the total MEST-C score of IgAN. Construct a nomogram model using independent predictive factors, with area under curve(AUC) of 0.821(95%CI:0.756−0.887)and 0.780(95%CI:0.656−0.904)for the training and validation sets. Based on the MEST-C total score >2 points as the research outcome, a clinical prediction model was established using clinical indicators(including 24-hour urine protein, Scr, and urinary red blood cell count) screened through multivariate logistic regression analysis. The model was compared with the nomogram model that included ultrasound parameters in this study. The results showed that the AUC of the clinical model is lower than that of the nomogram model:the AUC in the training set of the clinical model is 0.819 (95%CI:0.756−0.883), while the AUC of the nomogram model is 0.821(95%CI:0.756−0.887). The nomogram model combining clinical ultrasound parameters has better predictive performance in predicting MEST-C scores (>2) compared to a simple clinical model.
      Conclusion  This study constructs a nomogram model based on ultrasound and clinical parameters, which has good predictive performance and can accurately predict the total MEST-C score. It can be used for non-invasive assessment of renal pathological severity in clinical practice and provide guidance for the treatment of IgAN patients.

       

    /

    返回文章
    返回